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Abstract We review in this article pure quantization methods for the pricing of mul-
tiple exercise options. These quantization methods have the common advantage, that
they allow a straightforward implementation of the Backward Dynamic Program-
ming Principle for optimal stopping and stochastic control problems. Moreover we
present here for the first time a unified discussion of this topic for Voronoi and
Delaunay quantization and illustrate the performances of both methods by several
numerical examples.

1 Introduction

This paper is focused on pure quantization method for pricing multi-asset Ameri-
can style options (by contrast with hybrid Monte Carlo-quantization approaches).
It continues two goals: it is partly a survey on the pricing of this family of options
by optimal Voronoi quantization techniques. It is also an opportunity to present
our first attempt to implement in a multi-dimensional setting the new quantization
method called dual (or Delaunay) quantization recently developed and investigated
in [Pagès and Wilbertz 2010a] and [Pagès and Wilbertz 2010b]. This approach re-
lies on the Delaunay triangulation of a grid whereas usual vector quantization re-
lies on its Voronoi diagram, hence its name since the Delaunay triangulation is and
Voronoi diagrams are in duality (see [Okabe et al. 2000]). Dual quantization has
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been originally introduced in [Pagès and Wilbertz 2009] to compute the expectation
of functionals of nonhomogenous Bernoulli random walks involved in the pricing
of CDO’s (in a static copula model).

Optimal Voronoi quantization, which is an old story going back to the 1950’s has
been originally developed for Signal transmission purpose at the Bell Laboratory,
has been implemented as a numerical method for the pricing of multi-asset Ameri-
can – strictly speaking Bermuda – options in a series of papers [Bally et al. 2001],
[Bally and Pagès 2003a], [Bally and Pagès 2003b], [Bally et al. 2003], [Bally et al. 2005].
Other fields of application have been developed, often in connection with financial
problems like numerical integration [Pagès 1993], [Pagès 1998], [Pagès and Printems 2003],
non-linear filtering(see [Pagès and Pham 2005], [Pham et al. 2005], [Sellami 2010],
[Sellami 2009] with application to stochastic volatility models, stochastic control
with application to portfolio management (see [Pagès et al. 2004]) and swing option
pricing (see [Bardou et al. 2010a], [Bardou et al. 2010b]), discretization of stochas-
tic PDE’s (typically Zakaı̈ and Mc Kean Vlasov equations, see [Gobet et al. 2007],
[Gobet et al. 2005]). We also refer to the surveys [Pagès et al. 2003] and [Pagès and Printems 2009]
and the references therein, as well as to the website devoted to Optimal quantization
(see [Pagès and Printems 2005]).

Quantization methods consist in approximating/discretizing an Rd-valued ran-
dom vector X by a random vector often denoted X̂ taking values into a grid Γ of
size N ≥ 1 so as to make ‖X− X̂‖p as small as possible. As concerns Voronoi quan-
tization, X̂ is a projection following the nearest neighbour rule on grid Γ of size N.
For dual quantization, X̂ is the result of a random splitting operator which projects
X on one of the vertices of a “minimal” Γ -valued d-simplex which contains X ,
with a probability ruled by the barycentric coordinates of X . In a quadratic Eu-
clidean framework optimal Voronoi quantizers satisfy the so-called stationary prop-
erty X̂ = E(X | X̂) whereas all dual quantizers satisfy the reverse stationarity prop-
erty X = E(X̂ |X). When X has an unbounded support, one extends the splitting
operator by a nearest neighbour projection outside the convex hull of the grid Γ .

In order to solve dynamic optimization problems related to a (discrete time)
Markov chain (Xk)0≤k≤n, one introduces quantization trees that is quantization
grids Γk of the marginal Xk and some transition matrices approximating the the
Markov transition of the chain. The stationarity of the grids used in the quanti-
zation schemes designed on such quantization tree plays a important role to pre-
serve the numerical efficiency/accuracy: the easiest way to get convinced is to
check that such grids lead to quantization based cubature formulas of second or-
der (see [Pagès 1993, Pagès and Wilbertz 2010a]). Although not as prominent when
dealing with less linear problems (Bermuda option pricing, filtering, stochastic con-
trol, etc), stationarity turns out to be crucial when dealing with numerical implemen-
tation. Now, only optimal Voronoi quantization grid share this property whereas it
is shared by all dual quantization grids. This makes dual quantization more flexi-
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ble than the Voronoi one: when switching from a distribution to another like in an
iterative calibration procedure, one only has to modify the weights of a dual quanti-
zation grid to preserve the stationarity (even if the resulting quantization is no longer
optimal). This can be done on line by a regular Monte Carlo simulation in a few sec-
onds or even less with the help of high performance massively parallel computation
device (GPGPU). When dealing with Voronoi quantization, preserving stationarity
requires to re-adjust both the grids and the weights.

In Section 2 we propose in a Markovian framework a unified approach to provide
some a priori error bounds for Voronoi and Delaunay quantization schemes, relying
on a non asymptotic version of Zador’s theorem (about the rate of decay of the Lp-
quantization error). This improves and simplifies the results in [Bally and Pagès 2003a].
The resulting bound is the (weighted) sum of the quantization errors of the marginals
of the Markovian dynamics.

In Section 3, we present with more details both Voronoi and Delaunay quan-
tization. In Section 4, we briefly describe several stochastic optimization methods
to optimize grids. Those related to Voronoi quantization are classical (Lloyd’s I and
CLV Q) whereas their counterpart have been recently devised in [Pagès and Wilbertz 2010a]
or completely new. In section 6, we propose methods – some of them heuristic –
to optimize the structure of the quantization tree. In Section 7, numerical test are
carried out on several American payoff functions (swing option, exchange option
between geometric indices and call option on minimum of two assets) in a multi-
dimensional setting. We determine empirically rates of convergence, discuss several
improvement possibilities and finally establish a comparison with the Longstaff-
Schwartz algorithm.

In this paper we only consider a (canonical) Euclidean framework although many
existence and rate results hold true for general norms. Algorithmic aspects are more
Euclidean dependent.

NOTATION: | . | denotes the canonical Euclidean norm on the vector space Rd of
column vectors. conv(A) denotes the convex hull of A⊂ Rd .

2 Quantized Backward Dynamic Programming Principle

Let (Xk)0≤k≤n be an Rd-valued homogeneous Feller Markov chain defined on a
probability space (Ω ,A ,P) with transition P(x,dy). The homogeneity assumption
is essentially made for convenience in order to to alleviate notations but the exten-
sion to a non-homogeneous framework is straightforward. We will make the slightly
more stringent assumption that the chain is in fact “Lipschitz Feller”: this means that
the transition is not simply Feller but also preserves uniformly Lipschitz continuous
functions: there exists a (finite) real constant [P]Lip such that
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∀ f : Rd → Rd , [P f ]Lip ≤ [P]Lip[ f ]Lip.

where [ f ]Lip = supx 6=y
| f (x)− f (y)]
|x−y] . Without loss of generality we may assume that

[P]Lip = sup
[ f ]Lip≤1

[P f ]Lip.

Let hk : Rd → R+, 0≤ k ≤ n, be a sequence of Borel functions satisfying

max
0≤k≤n

‖hk(Xk)‖p <+∞ for a p∈ [1,∞).

Let F X = (F X
k )0≤k≤n denote the natural filtration of the chain X . It is classi-

cal background from Optimal Stopping Theory that if one defines by induction a
backward sequence of Lp-integrable random variables (Vk)0≤k≤n as follows

Vn = hn(Xn), Vk = max
(

hk(Xk),E
(
Vk+1 |Xk

))
(1)

(called the Backward Dynamical Programming Principle (BDPP)) then

V0 = sup
{
E
(

hτ(Xτ) |F X
0

)
, τ : Ω →{0, . . . ,n}F X -stopping time

}
and more generally

Vk = esssup
{
E
(

hτ(Xτ) |F X
k

)
, τ : Ω →{k, . . . ,n}F X -stopping time

}
, k= 0, . . . ,n.

The sequence (Vk)0≤k≤n is also known as the (P,F X )-Snell envelope of the so-
called obstacle process (h(Xk))0≤k≤n. From a numerical point of view, one is usu-
ally interested in EV0 or EVk.

The paradigm of Quantized Backward Dynamic Programming Principle is two
folded and can be described as follows:

B Discretization. As a first step, we consider an abstract approximation process
of the Markov Chain (Xk)0≤k≤n by a sequence (X̂k)0≤k≤n of the form

X̂k = πk(Xk,Uk), k = 0, . . . ,n,

where (Uk)0≤k≤n is an i.i.d. sequence of Rd0 -valued random vector independent of
F X

n (i.e. of (Xk)0≤k≤n) and the mappings πk : Rd ×Rd0 → Rd are Borel functions.
As concerns numerical implementation we will of course ask the chain (Xk)0≤k≤n

and the exogenous simulation noise (Uk)0≤k≤n to be simulatable (at a reasonable
cost) and the mapping πk to take values in finite sets Γk (called grids).

We will see further on that these random vectors Uk represent an exogenous noise
involved in the simulation process of X̂k “from” Xk (so will be the case when dealing
with dual quantization). One can always achieve such a framework by defining the
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sequence (Uk) on a probability space (Ω0,A0,P0) and by considering the product
probability space (Ω̃ ,Ã , P̃) = (Ω ×Ω0,A ⊗A0,P⊗P0).

B Quantized Backward Dynamic Programming Principle. As a second step, we
introduce a dynamic programming formula involving the r.v. X̂k, obtained by sim-
ply mimicking the regular BDPP related to the Snell envelope of (hk(Xk))0≤k≤n;
in practice this essentially amounts to “forcing” the Markov property although the
sequence (X̂k)0≤k≤n has no reason to be a Markov chain. To be precise, we assume
that max0≤k≤n ‖hk(X̂k)‖p <+∞ for a p∈ [1,∞) and we define a sequence (V̂k)0≤k≤n

V̂n = hn(X̂n), V̂k = max
(

hk(X̂k),E
(
V̂k+1 | X̂k

))
. (2)

Then the following (new) result holds about the (strong) rate of approximation
of the Snell envelope (Vk)0≤k≤n by its quantized counterpart (V̂k)0≤k≤n, having in
mind that |EVk−EV̂k| ≤ ‖Vk−V̂k‖p for every p≥ 1.

Proposition 2.1 Let p∈ [1,+∞). Assume that

max
0≤k≤n

(
‖Xk‖p +‖X̂k‖p

)
<+∞

and that all the functions hk, k = 0, . . . ,n, are Lipschitz continuous.

(a) If p = 2, then, for every k∈ {0, . . . ,n},

‖Vk−V̂k‖2 ≤
√

2

(
n

∑
`=k

(
Cn,`([P]Lip, [h.]Lip)

)2
‖X`− X̂`‖2

2

) 1
2

(b) If p 6= 2, then for every k∈ {0, . . . ,n},

‖Vk−V̂k‖p ≤ 2
n

∑
`=k

Cn,`([P]Lip, [h.]Lip)‖X`− X̂`‖p

where
Cn,k([P]Lip, [h.]Lip) = max

k≤`≤n

(
[P]`−k

Lip [h`]Lip

)
.

Proof. STEP 1. The functions vk are Lipschitz. One first shows by induction using
the Markov property that

Vk = vk(Xk), k = 0, . . . ,n,

where the functions vk are Lipschitz continuous satisfying

vn = hn and vk = max(hk,Pvk+1), k = 0, . . . ,n−1.

In particular, for every k = 0, . . . ,n (with the convention [vn+1]Lip = 0),
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[vk]Lip ≤max
(
[hk]Lip, [P]Lip[vk+1]Lip

)
where we used the elementary inequality |supi∈I ai − supi∈I bi| ≤ supi∈I |ai − bi|.
Then standard computations yield that

[vk]Lip ≤ max
k≤`≤n

(
[P]`−k

Lip [h`]Lip

)
.

(a) From now on, we focus on the quadratic case p = 2.

STEP 2. Induction on ‖Vk−V̂k‖2
2
. It follows from the quantized BDPP that

V̂k = v̂k(X̂k) where v̂k : Rd → R+, k = 0, . . . ,n.

are Borel functions. Then

‖Vk−V̂k‖2
2
≤ ‖hk(Xk)−hk(V̂k)‖2

2
+‖E(Vk+1 |Xk)−E(V̂k+1 | X̂k)‖2

2

≤ [hk]
2
Lip‖Xk− X̂k‖2

2
+‖E(Vk+1 |Xk)−E(V̂k+1 | X̂k)‖2

2
.

where we used that

|max
i=1,2

ai−max
i=1,2

bi|2 ≤max
i=1,2
|ai−bi|2 ≤ ∑

i=1,2
|ai−bi|2.

Now, one easily checks that

E
(

V̂k+1 | X̂k

)
= E

(
V̂k+1 |πk(Xk,Uk)

)
=
∫
Rd0

E
(

V̂k+1 |πk(Xk,u)
)
PUk

(du)

since X̂k = πk(Xk,Uk), Uk and (V̂k+1,Xk) are independent (keep in mind that V̂k+1 is
σ(X̂k+1)-measurable and σ(X̂k+1)⊂ σ(Xk+1,Uk+1)). It follows∥∥∥E(Vk+1 |Xk)−E(V̂k+1 | X̂k)

∥∥∥2

2
= E

(∫
Rd0

[
E(Vk+1 |Xk)−E

(
V̂k+1 |πk(Xk,u)

)]
PUk

(du)
)2

≤
∫
Rd0

E
(
E(Vk+1 |Xk)−E

(
V̂k+1 |πk(Xk,u)

))2
PUk

(du)

=
∫
Rd0

∥∥∥E(Vk+1 |Xk)−E
(

V̂k+1 |πk(Xk,u)
)∥∥∥2

2
PUk

(du). (3)

Now, for every u ∈ Rd0 , one writes

E
(
Vk+1 |Xk

)
−E
(

V̂k+1 |πk(Xk,u)
)

= E
(
Vk+1 |Xk

)
−E
(

Vk+1 |πk(Xk,u)
)
+E
(

Vk+1 |πk(Xk,u)
)
−E
(

V̂k+1 |πk(Xk,u)
)
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The random variable

E
(

Vk+1 |Xk

)
−E
(

Vk+1 |πk(Xk,u)
)
= E

(
Vk+1 |Xk

)
−E
(
E
(
Vk+1 |Xk

)
|πk(Xk,u)

)
and E

(
Vk+1 |πk(Xk,u)

)
−E
(

V̂k+1 |πk(Xk,u)
)
∈ L2(σ(πk(Xk,u)) are orthogonal ow-

ing to the characterization of conditional expectation as an orthogonal projection.
Consequently∥∥∥E(Vk+1 |Xk

)
−E

(
V̂k+1 |πk(Xk,u)

)∥∥∥2

2

≤
∥∥E(Vk+1 |Xk)−E

(
Vk+1 |πk(Xk,u)

)∥∥2
2
+
∥∥∥E(Vk+1−V̂k+1 |πk(Xk,u)

)∥∥∥2

2

≤
∥∥E(Vk+1 |Xk

)
−E
(
E
(
Vk+1 |Xk

)
|πk(Xk,u)

)∥∥2
2
+‖Vk+1−V̂k+1‖2

2

=
∥∥Pvk+1(Xk)−E

(
Pvk+1(Xk) |πk(Xk,u)

)∥∥2
2
+‖Vk+1−V̂k+1‖2

2
(4)

where we successively used in the last two lines the facts that conditional expecta-
tion is an Lp-contraction and that E

(
Vk+1 |Xk

)
= E

(
vk+1(Xk+1) |Xk) = Pvk+1(Xk).

Now, going back to the very definition of conditional expectation,∥∥Pvk+1(Xk)−E
(
Pvk+1(Xk) |πk(Xk,u)

)∥∥
2
≤
∥∥Pvk+1(Xk)−Pvk+1(πk(Xk,u)

)∥∥
2

so that finally∥∥∥E(Vk+1 |Xk)−E
(

V̂k+1 |πk(Xk,u)
)∥∥∥2

2
≤
∥∥∥V̂k+1−Vk+1

∥∥∥2

2

+
∥∥Pvk+1(Xk)−Pvk+1(πk(Xk,u)

)∥∥2
2

≤
∥∥∥Vk+1−V̂k+1

∥∥∥2

2
+[Pvk+1]

2
Lip ‖Xk−πk(Xk,u)‖2

2
. (5)

On the other hand, Fubini’s Theorem implies∫
Rd0
‖Xk−πk(Xk,u)‖2

2
PUk

(du) =
∫
Rd0

(
E|Xk−πk(Xk,u)|2

)
PUk

(du)

≤ E
(∫

Rd0
|Xk−πk(Xk,u)|2PUk

(du)
)

=
(
E|Xk−πk(Xk,Uk)|2

) 1
2

= ‖Xk− X̂k‖2
2
.

Consequently, plugging this bound in the PU -integrated form of (5) and the resulting
inequality in (3), yields

‖Vk−V̂k‖2
2
≤ ‖Vk+1−V̂k+1‖2

2
+
(
[hk]

2
Lip +[Pvk+1]

2
Lip
)
‖Xk− X̂k‖2

2
.
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Hence, for every k∈ {0, . . . ,n},

‖Vk−V̂k‖2
2
≤

n

∑
`=k

(
[h`]2Lip +[P]2Lip[v`+1]

2
Lip
)
‖X`− X̂`‖2

2

≤ 2
n

∑
`=k

(
Cn,`([P]Lip, [h.]Lip)

)2
‖X`− X̂`‖2

2

owing to the upper bound established in Step 1 for [vk]Lip.

(b) One mimicks the proof of the above claim (a) but dealing now with ‖Xk− X̂k‖p

and relying on the generalized Minkowski inequality to establish the counterpart
of (3). Then on replaces (4) by∥∥∥E(Vk+1 |Xk

)
−E
(

V̂k+1 |πk(Xk,u)
)∥∥∥

p
≤ 2

∥∥Pvk+1(Xk)−E
(
Pvk+1(Xk) |πk(Xk,u)

)∥∥
p

+‖Vk+1−V̂k+1‖p .

Finally, one checks that∥∥Pvk+1(Xk)−E
(
Pvk+1(Xk) |πk(Xk,u)

)∥∥
p
≤ 2‖Pvk+1(Xk)−Pvk+1(Xk)‖p

and the conclusion follows. ♦

Example. We consider a jump diffusion solution to

dYt = b(t,Yt)dt +σ(t,Yt)dWt +κ(t,Yt−)dZt ,

where W = (Wt)t∈[0,T ] is an l-dimensional standard Brownian motion and Z =

(Zt)t∈[0,T ] is an l-dimensional square integrable compensated Lévy process without

Brownian component (so that its Lévy measure ν satisfies
∫
Rl
|z|2ν(dz)<+∞).

The processes W and Z are defined on a probability space (Ω ,A ,P) and are
supposed to be independent. In particular, Zt is centered, has a second moment and
both

(Zt)t∈[0,T ] and
(

ZtZ∗t − tE(Z1Z∗1)
)

t∈[0,T ]

are FW,Z
t -martingales (Z∗t stands for the transpose of Zt ). Assume that b : [0,T ]×

Rd → R, σ , κ : [0,T ]×Rd →M (d,q) are Lipschitz continuous functions in (t,x)
(these assumptions are not optimal).

Under these assumptions, the above SDE has a strong solution starting from any
finite random vector Y0 independent of (W,Z) defined on (Ω ,A ,P).

The “sampled process” (Ytn
k
)0≤k≤n at the discretization times tn

k =
kT
n , k= 0, . . . ,n,

is an homogenous Markov chain with transition P(n) := PT
n

formally reading
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PT
n
( f )(x) = Ex

(
f
(
YT

n

))
.

Such a Markov chain is usually not simulatable. However one may always associate
to such a diffusion process its Euler scheme with step T

n recursively defined by
Ȳ0 = Y0 and, for every k∈ {0, . . . ,n−1},

Ȳtn
k+1

= Ȳtn
k
+

T
n

b(tn
k ,Ytn

k
)+σ(tn

k ,Ytn
k
)(Wtn

k+1
−Wtn

k
)+κ(tn

k ,Ytn
k
)(Ztn

k+1
−Ztn

k
).

The sequence (Ȳtn
k
)0≤k≤n is a homogeneous Markov chain with transition P̄(n) read-

ing on bounded or non-negative Borel functions f ,

P̄(n)( f )(x) = E

(
f
(

x+b(x)
T
n
+σ(x)

√
T
n

Ξ +κ(x)Z T
n

))
(6)

where Ξ ∼N (0; Iq) is independent of Z T
n

. For notational convenience we will often

note P̄ for P̄(n).

Standard computations show that if f is Lipschitz continuous

|P̄(n)( f )(x)− P̄(n)( f )(x′)|2 ≤ [ f ]2Lip

(
1+[b]2Lip

(T
n

)2
+Cσ ,κ,d,Z

T
n

)
|x− x′|2

where Cb,σ ,d,Z = d[σ ]2Lip + [κ]2LipE|Z1|2. Similar bounds can be obtained for the
jump diffusion at time T

n using Itô’s formula with jumps. This leads to the following
proposition.

Proposition 2.2 There exists a real constant Cb,σ ,κ,T,d,Z such that,

∀n≥ 1, [PT
n
]Lip ≤ 1+Cb,σ ,κ,T,d,Z

T
n

and [P̄(n)]Lip ≤ 1+Cb,σ ,κ,T,d,Z
T
n
.

As a consequence, if P = PT
n

or P = P̄(n)

sup
n≥1

max
0≤k≤n

[P]kLip ≤ eCb,σ ,κ,T,d,Z <+∞.

This proposition emphasizes that if one set Xk =Ytn
k

or Xk = Ȳtn
k
, k = 0, . . . ,n, and

if, for example, hk = e−r kT
n h, k = 0, . . . ,n, with h : Rd → R+ a Lipschitz continu-

ous function, then the coefficients Cn,k([P]Lip, [h.]Lip) introduced in Proposition 2.1
remain uniformly bounded since

sup
n≥1

max
0≤k≤n

Cn,k([P]Lip, [h.]Lip)≤ eCb,σ ,κ,T,d,Z [h]Lip <+∞.
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3 Optimal Voronoi and Delaunay quantizations

In this section we deal for a while with a static problem: how to optimize the quan-
tization of a fixed Rd-valued random vector X . This is the purpose of optimal quan-
tization which consists in minimizing the Lp-mean approximation error induced by
a quantization X̂ of X that takes at most N values. To be more precise, we aim at
minimizing ‖X− X̂‖p over a certain class of discretely valued random vectors X̂ .

3.1 Optimal Voronoi quantization

In the case of Voronoi quantization this optimization problem reads

ep,N(X) = inf
{
‖X− X̂‖p : X̂ is a random vector with # X̂(Ω)≤ N

}
.

It turns out, see e.g. [Graf and Luschgy 2000], that this definition is equivalent to
the definition of the optimal quantization error as the minimal Lp-distance from X
to a finite grid Γ ⊂ Rd with cardinality #Γ ≤ N, i.e.

ep,N(X) = inf
Γ

{
‖dist(X ,Γ )‖p : Γ ⊂ Rd , #Γ ≤ N

}
= inf

Γ

{(
Emin

x∈Γ
|X− x|p

)1/p
: Γ ⊂ Rd , #Γ ≤ N

}
.

This equivalence is based on the construction of a Voronoi quantization by means
of the nearest neighbour projection. Therefore, let Γ = {x1, . . . ,xN} ⊂ Rd be a grid
and denote by (Ci(Γ ))1≤i≤N a Borel partition of Rd satisfying

Ci(Γ )⊂
{

ξ ∈ Rd : |ξ − xi| ≤ min
1≤ j≤N

|ξ − x j|
}
.

Such a partition is called a Voronoi partition generated by Γ and we may define the
corresponding nearest neighbour projection as

ProjΓ (ξ ) = ∑
1≤i≤N

xi1Ci(Γ )(ξ ). (7)

The discrete random vector

X̂Γ ,Vor = ProjΓ (X) = ∑
1≤i≤N

xi1Ci(Γ )(X).

is called Voronoi Quantization of X induced by Γ and satisfies

Emin
x∈Γ
|X− x|p = E|X− X̂Γ ,Vor|p.
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At this stage, the purpose of optimal quantization is to prove the existence of op-
timal grids of size at most N which resulting quantization error attains the minimal
Lp-quantization error ep,N .

Proposition 1 (Optimal Voronoi quantizer(s)). (see [Kieffer 1983, Graf and Luschgy 2000,
Pagès 1998]) (a) Let p∈ [1,∞). For every integer N ≥ 1, there exists at least one
optimal grid Γ ∗

N
of size at most N (or equivalently “at level N”) such that

‖X− X̂Γ ∗
N
,Vor‖p = ep,N(X)

and N 7→ ep,N(X) is (strictly) decreasing to 0 (as long as it does not vanish).
Furthermore ep,N(X) = 0 if and only if supp(PX ) has at most N elements and

if this support has at least N elements, then any optimal grid Γ ∗
N

has exactly N
pairwise distinct elements.

(b) If p = 2, any optimal Γ ∗
N

quantization grid satisfies the stationary property

E
(
X | X̂Γ ∗

N
,Vor) = X̂Γ ∗

N
,Vor. (8)

Furthermore, if d = 1 and X has an absolutely continuous distribution with a log-
concave probability density, then (see [Abaya and Wise 1982], [Abaya and Wise 1984],
[Trushkin 1982], [Kieffer 1983]) there is only one stationary quantizer which is nec-
essarily the unique optimal quantizer of X at level N.

The stationarity property (8) plays an important role in the numerical aspects
of optimal Voronoi quantization although its proof is rather simple for an optimal
quantizer: by the very definition of conditional expectation as an L2(P)-orthogonal
projection

ep,N(X)≤ ‖X−E(X | X̂Γ ∗
N
,Vor)‖2 ≤ ‖X− X̂Γ ∗

N
,Vor‖2 = ep,N(X),

one derives (by uniqueness) that E(X | X̂Γ ∗
N
,Vor) = X̂Γ ∗

N
,Vor a.s.

For further mathematical insights on optimal vector (or Voronoi) quantization or
for more details, we refer to [Graf and Luschgy 2000] and the references therein.

3.2 Optimal Delaunay quantization

By contrast to the above construction of Voronoi quantizations as best possible Lp-
mean approximation, optimal Delaunay (or dual) quantization relies on the best
approximation which can be achieved by a discrete random vector X̂ that satisfies
a certain stationarity assumption on the extended probability space (Ω ×Ω0,A ⊗
A0,P⊗P0). That is we define
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dp,N(X) = inf
X̂

{
‖X− X̂‖p : X̂ : (Ω ×Ω0,A ⊗A0,P⊗P0)→ Rd ,

# X̂(Ω ×Ω0)≤ N and E(X̂ |X) = X
}
.

Then (see [Pagès and Wilbertz 2010a]), one may show that such a definition is
equivalent to

dp,N(X) = inf
Γ

{
‖Fp(X ;Γ )‖p, Γ ⊂ Rd ,#Γ ≤ N

}
for the local dual quantization functional

Fp(ξ ;Γ )= inf
λ

{( N

∑
i=1

λi|ξ−xi|p
)1/p

, (λi)1≤i≤N ∈ [0,1]N and
N

∑
i=1

λixi = ξ ,
N

∑
i=1

λi = 1
}
.

When p = 2 (quadratic case) and if the grid Γ ⊂ Rd admits a unique Delau-
nay triangulation (e.g. if Γ contains an affine basis and its points are in general
position: none of its subset of size d + 1 lies on the same sphere), then it was
proved in [Pagès and Wilbertz 2010a] that we can construct a dual quantization
operator which is the counterpart of the nearest neighbour projection for Voronoi
quantization. This operator maps the random variable X randomly to the vertices
of the Delaunay “triangle” (in fact a d-simplex) in which X falls (see Figure 1
further on), where the probability of mapping X to a given vertex ti is deter-
mined by the i-th barycentric coordinate of X in the (non-degenerated) “hyper-
triangle” (or d-simplex) conv{t j : j = 1, . . . ,d + 1}. When p 6= 2, an extension
of the notion of Delaunay can still be defined although slightly more involved
(similarly, the Voronoi cells are no longer convex when p 6= 2). We refer again
to [Pagès and Wilbertz 2010a] for details.

Mathematically speaking, let (Dk(Γ ))1≤k≤m be a Delaunay partition of the con-
vex hull conv(Γ ) of Γ . Let us denote by λ k(ξ ) the barycentric coordinates of ξ in
the triangle Dk(Γ ), with the convention λ k

i (ξ ) = 0 if xi /∈ Dk(Γ ) and set

J u
Γ (ξ ) =

m

∑
k=1

[
N

∑
i=1

xi ·1{ i−1
∑

j=1
λ k

j (ξ )≤u<
i
∑

j=1
λ k

j (ξ )
}]1Dk(Γ )(ξ ).

Then it holds

Fp(ξ ;Γ ) =
(
EP0 |ξ −J U

Γ (ξ )|p
)1/p

,

where U is defined on (Ω0,A0,P0) with a U
(
[0,1]

)
-distributed (so that the oper-

ator J u
Γ
(ξ ) is defined on this exogenous space). Then we define (on the product

probability space (Ω̃ ,Ã , P̃)) the dual (or Delaunay) quantization

X̂Γ ,Del = J U
Γ (X)
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so that
‖Fp(X ;Γ )‖p = ‖X− X̂Γ ,Del‖p and E(X̂Γ ,Del|X) = X .

As a matter of fact, this “strict” dual stationarity condition can only be fulfilled if
supp(PX ) is bounded. To preserve as much intrinsic stationarity for X̂Γ as possible,
i.e. stationarity on conv(Γ ), we introduce the dual quantization for non-compactly
supported random vector X as

̂̄XΓ ,Del
= J U

Γ (X)1{X∈conv(Γ )}+ProjΓ (X)1{X /∈conv(Γ )}.

and denote the optimal dual quantization error in this case by

d̄p,N(X) = inf
Γ

{
‖X− ̂̄XΓ ,Del

‖p, Γ ⊂ Rd ,#Γ ≤ N
}
.

Optimal dual quantizers. In both settings, it is shown in [Pagès and Wilbertz 2010a],
under continuity assumption of the distribution of X , that for every N ≥ 1, there ex-
ists at least one optimal dual quantizer at level N which has exactly N components
for d̄p,N(X). Furthermore d̄p,N(X)→ 0 as N → ∞. If the distribution of X is com-
pactly supported the same holds for the modulus dp,N(X) as soon as N ≥ d +1.

Brief comparison of Delaunay and Voronoi quantization.

To illustrate the difference between Voronoi and Delaunay quantization (in the case
d = p = 2), we compare in Figure 1 below the nearest neighbor projection and the
dual quantization operator.

For a given grid Γ ⊂ Rd , the nearest neighbor projection ProjΓ maps X(ω) en-
tirely to the generator of the Voronoi cell Ci(Γ ) in which X(ω) falls. By contrast,
the Delaunay random splitting operator JΓ splits up the “weight” 1 of X(ω) across
the vertices of the Delaunay triangle in which X(ω) falls. Since each vertex receives
here a proportion according to the barycentric coordinate of the point X(ω) in that
specific Delaunay triangle, this splitting operator fulfills a backward interpolation
property, i.e. the ”weight” of X(ω) is given by a convex combination on the ver-
tices of the Delaunay triangle. Finally, this property also implies the intrinsic dual
stationarity condition E(X̂Γ ,Del|X) = X

For a comparison in one dimension, we give the example of an optimal quanti-
zation for U ([0,1]). Following [Pagès and Wilbertz 2010a], Section 5.1, we derive
for an optimal dual quantizer of U ([0,1]) and size N

ΓDel,N =

{
i−1
N−1

: i = 1, . . . ,N
}
.

On the other hand, it holds in the case of optimal Voronoi quantization
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ΓVor,N =

{
2i−1

2N
: i = 1, . . . ,N

}
.

so that an optimal Voronoi quantizer of size N is made up by the midpoints of an
optimal Delaunay of size N +1.

Note, that such a property does not hold for general distributions and in arbitrary
dimensions. The asymptotic relationship between the optimal grids for Delaunay
and Voronoi quantization is established in the following section 3.3.

X(ω) X(ω)

Fig. 1 Voronoi (left) and Delaunay (right) mapping for the realization X(ω).

3.3 Quantization rates

Both Regular (or Voronoi) and dual (or Delaunay) quantization error moduli satisfy
formally the same theorem.

Theorem 3.1 (Optimal Voronoi quantization) Let p, p′∈ (0,∞), p < p′.

(a) ASYMPTOTIC ERROR BOUND (ZADOR’S THEOREM) (see e.g. [Zador 1982,
Bucklew and Wise 1982, Graf and Luschgy 2000]) Assume X∈ Lp′(Ω ,A ,P) with a
distribution PX (dξ )= h(ξ )λd(dξ )+νX (dξ ) where the finite measure νX is singular
w.r.t. the Lebesgue measure λd on (Rd ,Bor(Rd)). Then

lim
N

N
1
d ep,N(X) = J̃ vq

d,p,‖.‖‖h‖
1
d

p
p+d

where J̃ vq
d,p,‖.‖ = infN≥1 N

1
d ep,N(X)∈ (0,∞) corresponds to the uniform distribution

over the unit hypercube [0,1]d when Rd is equipped with the norm ‖ .‖.
(b) NON-ASYMPTOTIC ERROR BOUND (PIERCE’S LEMMA) (see e.g. [Luschgy and Pagès 2008])
There exists a real constant Kvq

d,p,p′ ∈ (0,∞) such that, for every random vector
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X : (Ω ,A ,P)→ Rd ,

∀N ≥ 1, ep,N(X)≤ Kvq
d,p,p′N

− 1
d min

a∈Rd
‖X−a‖p′ .

In fact the above non-asymptotic bound is a slight improvement of that estab-
lished in [Luschgy and Pagès 2008] taking advantage of the obvious invariance of
ep,N(X) by translation: ep,N(X) = ep,N(X +a), a∈ Rd .

Theorem 3.2 (Optimal dual quantization) ([Pagès and Wilbertz 2010b]) The above
theorem for Voronoi quantization also holds true, with appropriate real constants
J̃dq

p,‖.‖ (≥ J̃ vq
p,‖.‖) and Kdq

d,p,p′ (≥ Kvq
d,p,p′ ) when replacing ep,N(X) by its counterpart

the minimal dual Lp-mean quantization error d̄p,N(X). However, the non-asymptotic
claim only holds true for N ≥ Nd,p,p′ (where Nd,p,p′ only depends on d, p, p′).

When X has a compact support, the theorem holds true for the error modulus
dp,N(X) with same constants J̃dq

p,‖.‖ and Kdq
d,p,p′ (with the convention dp,N(X) = +∞

if N ≤ d). Finally, when d = 1, J̃dq
1,p,‖.‖ =

(
2

(p+1)(p+2)

) 1
p
=
(

2p+1

p+2

) 1
p

J̃vq
1,p,|.| ≥ J̃vq

1,p,|.|.

4 How to get optimal Voronoi and Delaunay quantizations

4.1 Optimal quadratic Voronoi Quantization

Throughout this section we focus on the quadratic case, although, at least formally,
all proposed algorithms have Lp counterparts for p≥ 2.

4.1.1 Original and randomized Lloyd’s I algorithm

When the dimension d = 1 and p = 2 (quadratic case), one may identify a quantiza-
tion grid Γ of size N with an N-tuple with increasing components i.e. an element of
IN := {(x1, . . . ,xN )∈RN | −∞< x1 < · · ·< xN <+∞}. It has been originally shown
in [Kieffer 1983] that if the distribution of a random variable X has a log-concave
probability density function, then there exists a unique stationary quantizer of size
N, denoted Γ ∗,N i.e. a quantizer satisfying

E
(
X | X̂Γ ∗,N)= X̂Γ ∗,N . (9)

Since a quadratic optimal quantizer at level N of an absolutely continuous distri-
bution has exactly N pairwise distinct components and is stationary (see Proposi-
tion 1), this stationary quantizer Γ ∗,N is also the unique optimal quadratic quantizer.
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In [Kieffer 1982] is proposed an alternative and more constructive proof of the
above facts. It is based on the so-called Lloyd’s I procedure which updates recur-
sively a quantization grid Γ(m) (of size N) as follows:

X̂Γ(m+1) = E
(
X | X̂Γ(m)

)
, m∈ N, Γ(0)∈IN ∩H (PX ) (10)

where H (PX ) = conv(supp(PX )). It is proved that the procedure “lives” inside
IN ∩H (PX ) and that, still under the log-concavity assumption, Γ(m) converges ex-
ponentially fast toward the unique stationary N-quantizer Γ ∗,N . Written in a more
analytical form, (10) reads, if Γ(m) = {xm,1, . . . ,xm,N},

xm+1,i = E
(
X | X̂Γ(m) = xm,i

)
=

∫
Ci(Γ(m))

ξPX (dξ )

PX (Ci(Γ(m)))
, i = 1, . . . ,N,

where in this 1D-setting Ci(Γ(m)) =
(xm,i−1 + xm,i

2
,

xm,i + xm,i+1

2
]
, with xm,0 = −∞

and xm,N+1 =+∞.
It is straightforward that the procedure as defined by (10) can be extended to the

d-dimensional setting. One defines recursively the sequence of N-quantizers Γ(m),
m∈ N, by Γ(0) ⊂H (PX ), #Γ(0) = N and

xm+1,i = E
(
X | X̂Γ(m) = xm,i

)
=

E
(
X1{X∈Ci(Γ(m)}

)
P(X ∈Ci(Γ(m)))

, i = 1, . . . ,N,

with obvious notations. One easily checks that

‖X− X̂Γ(m+1)‖2 = ‖X−E
(
X | X̂Γ(m))

∥∥
2

= inf
{
‖X−ϕ(X̂Γ(m))‖2 : ϕ : Rd → Γ(m),ϕ is Borel

}
≤ ‖X− X̂Γ(m)‖2

so that, this multi-dimensional Lloyd’s I procedure always makes the quadratic
quantization error decrease (except if Γ(m) is itself stationary at finite range). Of
course, any stationary quantizer is a fixed point for the Lloyd’s I procedure and in
higher dimension there are always several stationary quantizers. As far as we know,
no convincing proof of pointwise convergence to a global minimum has been estab-
lished so far for the grids Γ(m). However, from a practical point of view, one may
reasonably hope that this convergence does hold, at least toward a local minimum
of the quadratic quantization error functional Γ 7→ ‖X− X̂Γ ‖2.

As soon as the dimension d of the state of the random vector X is greater than
2 or 3, the Lloyd’s I procedure cannot be implemented by analytical means since

it becomes impossible to compute integrals like
∫

Ci(Γ )
f (ξ )dξ by any kind of cu-

bature formulas (however see [Wilbertz 2005] for low dimensions). The alternative
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solution, when the random vector X is simulatable, is to rely on a Monte Carlo
simulation at each step m to compute for every i∈ {1, . . . ,N},

E
(
X |X ∈Ci(Γ(m))

)
= a.s.- lim

L→∞

∑
L
`=1 X`1{X`∈Ci(Γ(m))}

∑
L
`=1 1{X`∈Ci(Γ(m))}

.

Note that X` ∈Ci(Γ(m)) if and only if xm,i is the nearest neighbour of X` among all
components xm,i, i = 1, . . . ,N of the current grid Γ(m) (with appropriate conventions
on the boundary). This randomized Lloyd’s I procedure has the complexity of L
nearest neighbour searches, see Section 4.1.4 for a few comments on (fast) nearest
neighbour search. Also note that this phase can be performed offline and that each
Monte Carlo step can be parallelized.

A huge literature has been devoted to practical aspects of Lloyd’s I procedure
and its applications in Signal Processing and Data compressing. For further insights
in that direction, see e.g. [Gersho and Gray 1992]. In Data Analysis (when the un-
derlying distribution of interest is the uniform distribution over the data set (i.e. the
empirical measure of this data set) the “batch” (for “non-randomized”) procedure is
known as the k-means algorithm. For some applications in Delaunay grid generation
see [Du and Gunzburger 2002]. On the other hand little has been done on theoretical
aspects, since [Kieffer 1982].

4.1.2 The Competitive Learning Vector Quantization algorithm

The so-called CLV Q algorithm is a stochastic gradient algorithm relying on the fact
that the squared quadratic quantization error, called distortion. We will make the
obvious abuse of notation consisting in identifying grids of size at most N and N-
tuples with possibly “repeated” components. The distortion is then defined on (Rd)N

by
Γ = (x1, . . . ,xN ) 7−→ DistorN(X ;Γ ) := E min

1≤i≤N
|X− xi|2.

This function is differentiable at every N-tuple x = (x1, . . . ,xN )∈ (Rd)N having pair-
wise distinct components with a gradient ∇xDistorN(X ;Γ ) given by

∇xDistorN(X ;Γ ) = 2
(
E
(
(xi−X)1{X∈Ci(Γ )}

))
1≤i≤N .

If #suppPX ≥ N, the distortion function is differentiable at any minimum since it
has pairwise distinct components (see [Graf and Luschgy 2000]). Furthermore as
emphasized above its gradient has a representation as an expectation formally read-
ing

∇xDistorN(X ;(x1, . . . ,xN )) = E
(
∇xdistorN

(
X ;(x1, . . . ,xN )

))
.
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The function defined on Rd× (Rd)N by

(ξ ,Γ ) 7−→ ∇xdistorN
(
X ;Γ

)
is sometimes called a local gradient of the potential function DistorN . Then, the
paradigm of stochastic approximation says that under technical assumptions to be
specified, the so-called stochastic gradient descent defined by

Γ(m+1) = Γ(m)− γm+1∇xdistorN(Xm+1;Γ(m)), m≥ 1, Γ(0) ⊂ Rd , #Γ(0) = N,

where (Xm)m≥1 is an i.i.d. sequence of copies of X and (γm)m≥1 is a sequence of
gain parameter satisfying the decreasing step assumption” assumption ∑m≥1 γm =

+∞ and ∑m≥1 γ2
m < +∞ which is standard in Stochastic Approximation Theory,

“hopefully” converges toward a local minimum of the distortion function.

From a practical point of view, this abstract formula can be decomposed into two
phases: set for convenience Γ(m) = (xm,1, . . . ,xm,N), m≥ 0.

(i) Competitive Phase: Search of the nearest neighbour xm,i∗(Xm+1) of Xm+1

among the components of xm,i, i = 1, . . . ,N, of Γ(m) (using a “winning convention”
in case of conflict between two or more components).

(ii) Learning Phase: One moves the winning component towards Xm+1 using a
dilatation i.e.

xm+1,i∗(Xm+1) = Dilatation[Xm+1,1−γm+1](xm,i∗(Xm+1))

where the dilatation Dilatation[ξ ,λ ] centered at ξ ∈Rd with ratio λ > 0 is defined by

∀y∈ Rd , Dilatation[ξ ,λ ](y) = ξ +λ (y−ξ ) = (1−λ )ξ +λy.

All other components stay still.

This procedure is useful for small or medium values of N. For general back-
ground on stochastic approximation, we refer to [Benveniste et al. 1990, Duflo 1996,
Kushner and Yin 2003]. Unfortunately, the CLV Q procedure turns out to be sin-
gular in the world of recursive stochastic approximation algorithms: only “condi-
tional a.s. convergence” results have been obtained (also known as a.s. convergence
in the “Kushner-Clark sense”) in higher dimension (for compactly supported dis-
tributions), see [Pagès 1998]. However, in a 1D framework, regular a.s. conver-
gence has been established with a weak rate ruled by a standard Central Limit
Theorem, still for distributions with compact support (see [Bouton and Pagès 1993,
Benaı̈m et al. 1998]).

This procedure has also given rise to many empirical investigations and heuristic
statements, especially in the artificial neural network community where the CLV Q
algorithm appears as a degenerate case of the Kohonen self-organizing maps used in
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non-linear automatic classification. Its complexity is again closely related to nearest
neighbour searches. Parallelized versions based on a stratification of the state space
can be used to speed up the procedure

Other optimization procedures have also been implemented like (randomized)
evolutionary algorithms (see e.g. [Mrad and Ben Hamida 2006]).

4.1.3 Companion parameters

To fully elucidate the distribution of a quantization X̂ of X , not only the grid
Γ = {x1, . . . ,xN} is necessary but also the weights pi = P(X̂ = xi). These weights
are often called “companion parameters”. Other companion parameters may be of
interest like the local inertia E

(
1X∈{Ci(Γ )}|X− xi|2

)
.

B Adaptive estimation (CLV Q). When performing the CLV Q algorithm, one may
devise a companion procedure to estimate these weights on-line by setting

pi
(m+1) = pi

(m)− γ̃m+1

(
pi
(m)−1{i∗(Xm+1)=i}

)
, i = 1, . . . ,N

where γ̃m = γm or γ̃m = 1/m (the second choice corresponds to the usual empirical
mean but with respect to the “moving grids” Γ(m)). No significant extra computation
is needed since i∗(Xm+1) is already computed in the core of the CLV Q procedure.

B Posterior estimation. From a practical point of view, it seems more efficient to
estimate the weights pi by a standard Monte Carlo simulation posterior to the grid
optimization: this amounts to “freezing” Γ(m) =Γ and setting γ̃m = 1/m in the above
procedure (still based on repeated nearest neighbour searches).

4.1.4 More on practical aspects

B Quasi-Monte Carlo. For formerly mentioned procedures, one may substitute a
sequence of quasi-random numbers – e.g. like the Halton or the Sobol’ sequences –
to the usual sequence pseudo-random numbers. This often speeds up the rate of
convergence of the method, although this remains mostly heuristic in Stochastic
Approximation (see however [Lapeyre et al. 1990]).

B Inductive computation: the splitting method. The most important step to pre-
serve the accuracy of the quantization as N increases is to use the so-called split-
ting method which finds its origin in the proof of the existence of an optimal N-
quantizer: once the optimization of a quantization grid of size N is achieved, one
specifies the starting grid for the size N + 1 or more generally N + ν , ν ≥ 1, by
merging the optimized grid of size Nwith ν points sampled independently from
the distribution having a probability density proportional to ϕ

d
d+2 where ϕ denotes
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the p.d.f. of the distribution PX . This rather unexpected choice is motivated by the
fact that this distribution provides the lowest in average random quantization error
(see [Cohort 1998]).

When simulation at a reasonable cost of the distribution ϕ
d

d+2 (ξ )λd(dξ ) is im-
possible, one can still simulate instead PX -distributed numbers. This is the adopted
strategy to compute the grids of the d-dimensional normal distribution available on
the website [Pagès and Printems 2005] (see below).

B Nearest neighbour search. All the above procedures rely on repeated nearest
neighbour searches. The complexity of a naive implementation of this procedure
grows linearly with d×N and becomes very demanding as d increases. So reducing
its computational cost is strategic.

– The most basic (although quite efficient) method is the Partial Distance Search:
to check whether a record level Lrec is beaten or not by |x|= ((x1)2+ · · ·+(xd)2)1/2

one checks at each step ` if (x1)2 + · · ·+(x`)2 ≥ L2
rec. If so, one rejects x and test a

new point.
– A more sophisticate procedure has been originally devised by Bentley and an-

alyzed in a the seminal paper [Friedman et al. 1977] . It is an efficient way to store
the data (the N points) based along a search tree called k-d tree. It reduces the
complexity of the nearest neighbour search down to O(logN) (after a one shot pre-
processing of complexity O(N logN)). An improved version of the k-d tree, based
on a preliminary PCA, has been developed in [McNames 2001] and is known as the
PAT algorithm (for Principle Axis Tree). Other search trees based on a preliminary
“rough” quantization have also been proposed (see [Corlay 2011]). The (relative)
efficiency of such methods first increases as the dimension of the state space grows
but becomes more limited for large dimension where “brute force” (unfortunately)
comes back in the game.

B Still more on practical aspects. Many practical studies have been carried out, in-
cluding heuristic considerations about the above described procedures in [Gersho and Gray 1992]
with an orientation toward Signal Processing and Data compressing. In [Pagès and Printems 2003]
a first numerical study entirely devoted to the multi-variate normal distribution has
been developed which finally led to make available optimized grids of multivariate
normal distributions on the website [Pagès and Printems 2005] devoted to optimal
vector and functional quantization.

These grids have been computed inductively using the splitting method by a combi-
nation of CLV Q (for medium values of N ) and Lloyd’s I algorithm, for dimension
running from d = 1 up to d = 10 and sizes N running from 1 up to 10000. For
each grid Γ several “companion parameters (see below) are included in the files,
especially the weights wi = P(N (0; Id)∈ Ci(Γ )), i = 1, . . . ,N, but also the local
Lp-inertia

(
E|X− xi|p1{X∈Ci(Γ )}

)
1≤i≤N for p = 1, 2.
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4.2 Dual quantization

In general, a grid which has been optimized for Voronoi quantization can also serve
as a good grid for Delaunay quantization. As concerns practical applications, the
key advantage of dual quantization is its intrinsic (dual) stationarity property

E(X̂Γ ,Del|X) = X (where X̂Γ ,Del = J U
Γ
(X))

which holds for any grid Γ with supp(PX ) ⊂ conv{Γ } regardless of its optimality
with respect to the distribution of X . Dual stationarity exclusively follows from the
way the dual quantization weights are defined as

pi,Del = P(X̂Γ ,Del = xi).

One way to get (almost) the best from both methods, especially in higher dimension,
can to compute for a Voronoi stationary grid both its Voronoi and Delaunay (dual)
weights so as to take advantage of both stationarity properties.

Nevertheless, we give here a short sketch of the counterparts of both Lloyd’s I
procedure and CLVQ algorithm for dual quantization optimization. This is also a
way to check that optimal Voronoi and Delaunay quantization grids remain some-
what close, especially as d grows (see Figures 2 and 3).

4.2.1 Lloyd-type algorithm for dual quantization

In order to establish a Lloyd-type algorithm for the optimization of (quadratic) dual
quantization grids, we write Γ(m) = {xm,1, . . . ,xm,N} ⊂ Rd for m ∈ N and denote by
(DI(Γ ))I∈I a Delaunay partition of conv(Γ ), where the index set I = I (Γ ) ⊂{

I ⊂ {1, . . . ,N} : # I = d + 1
}

defines a Delaunay triangulation in Γ . Moreover, if
ξ ∈ DI(Γ ), we write λ I

xi
(ξ ) for the barycentric coordinate of ξ ∈ conv{x j : j ∈ I}

with respect to the vertex xi.
Recall that each Delaunay triangle DI(Γ ) is characterized by the center of a

sphere spanned by the vertices {x j : j ∈ I} which contains no point of Γ in its
interior. We then denote this center by zI = zI(Γ ) and define a Delaunay center by
mapping

ZΓ (ξ ) = ∑
I∈I

zI 1DI(Γ )(ξ ). (11)

Moreover, note that those Delaunay centers are exactly the vertices of the corres-
ponding Voronoi tessellation since they are at the same distance to the x j, j∈ J.

If one considers the optimization problem (still with the same abuse of notation)

Γ = (x1, . . . ,xN ) 7−→ DistorN(X ;Γ ) := E|X−J U
Γ (X)|2 (12)
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then it was shown in [Pagès and Wilbertz 2010a] that the gradient of this function
in Γ reads

∇Γ DistorN(X ;Γ ) = 2
[
E
(
(xi−ZΓ (X))1{J U

Γ
(X)=xi}

)]
1≤i≤N

.

The first order optimality condition therefore writes

E
(
ZΓ ∗(X)|J U

Γ ∗(X)
)
= J U

Γ ∗(X)

and can be regarded as a counterpart to (9). We may therefore define a Lloyd-type
method for dual quantization starting at some initial grid Γ(0) ⊂ Rd ,#Γ(0) = N as

X̂Γ(m+1) = E
(
ZΓ(m)(X)|J U

Γ(m)
(X)
)
, m≥ 0.

Since it holds

P(J U
Γ (X) = xi) = ∑

I∈I : i∈I

∫
DI(Γ )

λ
I
xi
(ξ )PX (dξ ),

we arrive for m≥ 1 at

xm+1,i =

∑
I∈I : i∈I

zI
∫

DI(Γ ) λ I
xi
(ξ )PX (dξ )

∑
I∈I : i∈I

∫
DI(Γ ) λ I

xi
(ξ )PX (dξ )

, i = 1, . . . ,N.

This means that xm+1,i is chosen as a weighted sum of the Delaunay centers zI whose
triangles share the same vertex xm,i in Γ(m). It can be shown that such an algorithm is
in fact a Quasi-Newton method and therefore converges to a local minimum of (12)
(see e.g. [Iri et al. 1984] in the case of the regular Lloyd’s I method).

This algorithm, which is new to our knowledge, is the first tool we used to com-
pute optimal dual quantization grids like the one below displayed below for the joint
distribution of the Brownian motion and its running supremum at time 1. The second
algorithm is the counterpart of the CLV Q and is described below.

4.2.2 CLVQ like procedure for dual quantization

Like for the “Voronoi” CLV Q algorithm, we consider the dual distortion function

Γ = (x1, . . . ,xN ) 7−→ DistorN(X ;Γ ) := E|X−J U
Γ (X)|2.

Referring again to [Pagès and Wilbertz 2010a], it holds for the gradient of the dual
distortion function

∇Γ DistorN(X ;Γ ) = 2
[
E
(
(xi−ZΓ (X))1{J U

Γ
(X)=xi}

)]
1≤i≤N

.
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Fig. 2 Voronoi quantization of the joint distribution a standard Brownian motion and its running
supremum at time T = 1 (N = 250).
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Fig. 3 Delaunay (dual) quantization of the joint distribution a standard Brownian motion and its
running supremum at time T = 1 (N = 250).

As above, the stochastic gradient method is given by

Γ(m+1) = Γ(m)− γm+1∇xdistorN(Xm+1;Γ(m)), m≥ 1, Γ(0) ⊂ Rd , #Γ(0) = N
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where (Xm)m≥1 is an i.i.d. sequence of copies of X and (γm)m≥1 is a sequence of
gain parameters satisfying the decreasing step assumption.

In practice that means that we generate a sequence (Xm)m≥1 of i.i.d copies of X
and the two phases of the CLVQ-algorithm read as follows

(i) Competitive Phase: Search for the Delaunay triangle I∗(Xm+1) ∈ I (Γ(m))

which contains the realization Xm+1.

(ii) Learning Phase: One moves the winning triangle towards the Delaunay cen-
ter ZΓ(m)(Xm+1) using a dilatation i.e.

∀i ∈ I∗(Xm+1), xm+1,i = Dilatation
[Z

Γ(m) (Xm+1),1−γm+1]
(xm,i).

4.2.3 Search for the matching Delaunay hyper-triangle

A crucial point in both above procedures, as well as in the weight computations later
on, is the search for the Delaunay triangle I∗(ξ ) ∈ I (Γ ), which contains a point
ξ ∈ conv(Γ ). This phase in dual quantization optimization is the exact counterpart
of nearest neighbour search for Voronoi quantization. Such a search can be imple-
mented efficiently by a directed search on the Delaunay triangulation of Γ . To be
more precise, one starts at a triangle I0 ∈I (Γ ) and then moves on to that neighbor
triangle of I0 which lies on the line defined by the Delaunay center zI0 and ξ . It
was shown in [Bowyer 1981] that such a procedure reaches the triangle I∗ ∈I (Γ )

which contains ξ in average after Od(N1/d) steps, where N is the number of points
in the grid Γ . For more details on such point location procedures in triangulations
we refer to [Devroye et al. 2004] and [Muecke et al. 1999].

We did not speak yet about the weight computation in this section although it is a
crucial step to fully determine the distribution of X̂ (whatever type of quantization is
adopted) which in turn is necessary to produce quantization based cubature formu-
las. However, since we are interested in American option pricing, we postpone this
kind of question to the quantization tree below where we will show how to compute
the transition weights of the tree for both types of quantization.

5 Application to cubature formula for numerical integration

Let X̂ be a quantization based approximation of a random vector X taking value in
a grid Γ = {x1, . . . ,xN} of size N ≥ 1 (X̂ = ProjΓ (X) (Voronoi) or J U

Γ
(X) (Delau-

nay)) depending on the type of the quantization).

B Lipschitz continuous functions. If F : Rd → R is Lipschitz continuous
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|EF(X)−EF(X̂)| ≤ [F ]LipE|X− X̂ |= ‖X− X̂‖1 .

This yields an approximate cubature formula since

EF(X̂) = ∑
1≤i≤N

piF(xi) where pi = P(X̂ = xi), i = 1, . . . ,N.

Furthermore, we know that Voronoi quantization is optimal in the following sense

sup{|EF(X)−EF(X̂)|, [F ]Lip ≤ 1}= e1,N(X).

B Functions with Lipschitz continuous differential. Assume that Γ̂ is stationary (i.e.
E(X | X̂)= X̂) or “dual stationary” (i.e.E(X̂ |X)=X), then (see [Pagès and Wilbertz 2010a])

|EF(X)−EF(X̂)| ≤ [DF ]LipE|X− X̂ |2

where DF denotes the (Lipschitz continuous) differential of F . At this stage, one
must have in mind that few grids Γ (mainly the optimal quadratic grids) are station-
ary for Voronoi quantization whereas all grids are stationary for dual quantization
by construction by construction.

B Convex functions. If F is convex and Γ is a stationary Voronoi quantizer, then

EF(X̂Γ ,vor)≤ EF(X) where X̂Γ ,vor = ProjΓ (X).

If X has compact support, for any grid Γ such that conv(Γ )⊃ supp(PX ),

EF(X)≤ EF(X̂Γ ,del) where X̂Γ ,del = J U
Γ (X).

Combining both quantization approaches yields a deterministic security interval.

6 Quantization tree

Let us come back to our Bermuda option pricing problem with the notations intro-
duced in Section 2. At each time k∈ {0, . . . ,n}, we consider a grid Γk of size Nk

supposed to be an optimal (or at least a “good”) Voronoi/Delaunay quantization of
the Markov chain Xk at time k.

We define the discretization function πk : Rd× [0,1]→ Rd as

• Voronoi: A Borel nearest neighbour projection on the grid Γk (see (7)) i.e.

∀ξ ∈ Rd , ∀u∈ [0,1], πk(ξ ,u) := ProjΓk
(ξ ). (13)

• Delaunay: A splitting operator on the grid Γk
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∀ξ ∈ Rd , ∀u∈ [0,1], πk(ξ ,u) := J u
Γk
(ξ )1{ξ∈conv(Γk)}+ProjΓk

(ξ )1{ξ /∈conv(Γk)}.

(14)

Definition 6.1 A quantization tree of the Markov chain X =(Xk)0≤k≤n is a sequence
(Γk,pk)0≤k≤n of grids and weight matrices where

– for k = 0, . . . ,n, Γk ⊂ Rd , #Γk = Nk ≥ 1 whose elements are denoted

Γk = {xk
1, . . . ,x

k
N
}, k = 0, . . . ,n;

– for k = 0, . . . ,n−1, pk =[pk
i j]1≤i≤Nk,1≤ j≤Nk+1 , defined by

pk
i j = P

(
X̂k+1 = xk+1

j | X̂k = xk
i

)
.

with the convention pk = 0.

The resulting “quantized” dynamical programming principle derived from (2),
once written “in distribution”, can be written on this tree as follows

v̂n(xn
i ) = hn(xn

i ), i = 1, . . . ,Nn

v̂k(xk
i ) = max

(
hk(xk

i ),
Nk+1

∑
j=1

pk
i j v̂k+1(xk+1

j )
)
, i = 1, . . . ,Nk, k = 0, . . . ,n−1.

Remarks. • Once the grids have been settled and the transition weight matrices
pk have been computed, on can perform the above backward quantization tree de-
scent as many times as necessary for different payoff functions. All the information
about the discretization of the Markov dynamics is “stored” in the quantization tree
(Γk,pk)0≤k≤n.

• The complexity of the backward descent of such a tree is clearly proportional to

∑
0≤k≤n−1

NkNk+1 for a given global budget of N = N0 + · · ·+Nn (usually prescribed

by the memory limitations of the computing device). Up to edge effects the minimal
complexity is attained with constant size trees i.e. Nk =

N
n+1 , k = 0, . . . ,n. If X0 = x0,

then N0 = 1 and Nk =
N−1

n , k = 1, . . . ,n. Other considerations (see below) may lead
to other specifications for the quantization tree

6.1 Error bounds

By combining the error bounds of Proposition 2.1 and the non asymptotic bounds for
optimal quantization(s) we get the following proposition which takes advantage of
the non-asymptotic Zador’s Theorems (3.1(b) and 3.2(b)). It simplifies the original
presentation from [Bally and Pagès 2003a] and extends it to dual quantization.
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Proposition 6.3 Assume the Markov chain satisfies all the assumptions of Propo-
sition 2.1 and that furthermore, max0≤k≤n ‖Xk‖p′ < +∞ for a p′ > 1. Assume that
the payoff functions hk, k = 0, . . . ,n are Lipschitz continuous. Assume the sequence
(X̂k)0≤k≤n is defined either by (13) or by (14) and that, for every k = 0, . . . ,n, the
quantization size Nk ≥ Nd,p,p′ (Nd,p,p′ = 1 in the Voronoi setting). Then for every
p∈ [1, p′), there exists a real constant κp,p′ > 0 such that, for every k∈ {0, . . . ,n},

‖vk(Xk)− v̂k(X̂k)‖p ≤ κp,p′

(
n

∑
`=k

(
Cn,`([P]Lip, [h.]Lip)σp′(X`)

)ϑp
N
− ϑp

d
`

) 1
ϑp

where σp(Xk) = mina∈Rd ‖Xk− a‖p, k = 0, . . . ,n, and ϑp = 2 if p = 2 and ϑp = 1
otherwise.

For a second order scheme (based on Voronoi quantization) which takes full
advantage of the stationarity, we refer to [Sellami 2010]. For other other applica-
tions (cubature formulas, non-linear filtering, stochastic control, etc) we refer to
the surveys [Pagès et al. 2003], [Pagès and Printems 2009] and the reference therein
(Voronoi quantization) or [Pagès and Wilbertz 2010a] (dual quantization).

6.2 Design of an optimized quantization tree by simulation

6.2.1 Grid sizes

A first step (however not mandatory) is to minimize the error bound (at the origin)
obtained in Proposition 6.3 for a given budget of elementary quantizers N0 + · · ·+
Nn≤N (where N ≥ n+1). The choice of N is usually related to the memory devoted
to the computation. An elementary optimization under constraint yields for the sizes
of the grids

Nk =

⌊
akN

a0 + · · ·+an

⌋
∨1 with ak =

(
Ck,n([P]Lip, [h.]Lip)σp′(Xk)

) ϑp d
d+1

, k = 0, . . . ,n.

with ϑ like in Proposition 6.3. This allocation is payoff-dependent but, if max
0≤k≤n

[hk]Lip <

+∞, one may replace ak by ãk =
(

max0≤`≤n−k[P]`Lipσp′(Xk)
)ϑp

or even ãk =

σ
ϑp
p′ (Xk) if, one “controls” max0≤k≤n[P]kLip (like in the example following Propo-

sition 2.1). In the dual setting, this allocation is an heuristic since we have the addi-
tional constraint Nk ≥ Nd,p,p′ .

Example. Let Xk = Wtn
k
, W Standard Brownian motion. Then σp′(Xk) = cp′

√
tn
k ,

k = 0, . . . ,n (and N0 = 1).
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6.2.2 Transition weight estimation

B The “diffusion” method. Like for the grid optimization, a large L-sample (X (`))1≤`≤L

of the chain is generated and sent “through” the grids. Then one estimates each tran-
sition weight by

pk
i j = a.s.- lim

L→∞

∑
L
`=1P(πk(X

(`)
k ,Uk) = xk

i ,πk+1(X
(`)
k+1,Uk+1) = xk+1

j |X (`)
k , X (`)

k+1)

∑
L
`=1P(πk(X

(`)
k ,Uk) = xk

i |X
(`)
k )

(15)
where πk is specified following the quantization type. We may assume that the in-
tegration with respect to Uk and Uk+1 can be performed explicitly by a closed form
solution (keeping in mind that (Uk) and (Xk) are independent). This holds trivially
true for Voronoi quantization, but also for dual quantization as we will see later on.

The strong consistency follows then from the Strong Law of large Numbers since

E
(
P
(
πk(X

(`)
k ,Uk) = xk

i ,πk+1(X
(`)
k+1,Uk+1) = xk+1

j |X (`)
k , X (`)

k+1

))
= P

(
πk(X

(`)
k ,Uk) = xk

i ,πk+1(X
(`)
k+1,Uk+1) = xk+1

j
)

and
E
(
P
(
πk(X

(`)
k ,Uk) = xk

i |X
(`)
k

))
= P

(
πk(X

(`)
k ,Uk) = xk

i
)
.

When πk does not depend on the exogenous noise (like for Voronoi quantization),
the above estimator coincide with the naive one, that is

pk
i j = a.s.- lim

L→∞

∑
L
`=1 1

{πk(X
(`)
k ,Uk)=xk

i ,πk+1(X
(`)
k+1,Uk+1)=xk+1

j }

∑
L
`=1 1

{πk(X
(`)
k ,Uk)=xk

i }

.

◦ To be precise, in the case of Voronoi quantization, it holds

πk(X
(`)
k ,Uk) = xk

i ⇐⇒ X (`)
k ∈Ci(Γk),

where Ci(Γk), i = 1, . . . ,Nk, denotes a Voronoi partition of Rd , so that (15) finally
reads

pk
i j = a.s.- lim

L→∞

∑
L
`=1 1

{X(`)
k ∈Ci(Γk)∩X(`)

k+1∈C j(Γk+1)}

∑
L
`=1 1

{X(`)
k ∈Ci(Γk)}

.

Note here, as far as implementation is concerned, we do not need to construct the
whole Voronoi diagram of the grids Γk. It is sufficient to perform a Nearest Neighbor
search to estimate the transition probabilities as it can be seen in Algorithm 1.
◦ As for dual quantization, it holds for Xk ∈ conv(Γk), with the notation from

Section 4.2,
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Algorithm 1 Transition probability estimation for Voronoi quantization
for `= 1, . . . ,L do

x← x0, i← 0, pi
1← 1

for k = 1, . . . ,n do
Simulate X `

k given X `
k−1

Find Nearest Neighbor-Index j of X `
k in Γk

Set
pk

i j+= 1
pk+1

j += 1
i← j

end for
end for
Set pk

ij←
pk

i j

pk
i
, 1≤ i, j ≤ Nk,1≤ k ≤ n

P(πk(X
(`)
k ,Uk) = xk

i ) = ∑
I∈I (Γk): i∈I

∫
DI(Γk)

λ
I
xk

i
(ξ )PX (dξ ),

where DI(Γk), I ∈I (Γk) denotes a Delaunay partition of conv(Γk) and λ I
xk

i
(ξ ), i∈ I,

denotes the barycentric coordinates of ξ with respect to “its” Delaunay d-simplex.
The estimation of the transition probabilities pk

i js then can be implemented as
shown in Algorithm 2.

Algorithm 2 Transition probability estimation for dual quantization
for `= 1, . . . ,L do

x← x0, i← 0, pi
1← 1

for k = 1, . . . ,n do
Simulate X `

k given X `
k−1

Find Delaunay hyper-triangle τk of X `
k in Γk

Update pk
·,· w.r.t. barycentric coordinates of (X `

k−1,X
`
k ) (τk−1,τk)

Update pk+1
· w.r.t. barycentric coordinates of X `

k in τk

end for
end for
Set pk

ij←
pk

i j

pk
i
, 1≤ i, j ≤ Nk,1≤ k ≤ n

Although this transition probability estimation by Monte-Carlo simulation is
usually the most time consuming part of the quantization tree algorithm in prac-
tice, one has to emphasize here, that both above algorithms can be parallelized
very efficiently. This is indeed of special importance since the availability of mas-
sive parallel computing device at very low price like as GPGPUs. It was shown
in [Pagès and Wilbertz 2011], that the computational time for transition probability
estimation can be reduced by a factor 200 when implemented on a GPGPU device.
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B The spray method. One can decouple the computation of the transitions at each
time step by noting that

L
(

πk+1(Xk+1,Uk+1)= xk+1
j |πk(Xk,Uk)= xk

i

)
≈L

(
πk+1(Xk+1,Uk+1)= xk+1

j |Xk = xk
i

)
.

The distribution on the right hand side is easy to simulate (since the chain is sup-
posed to be simulatable). Consequently one can perform a Monte Carlo simulation
based on this distribution to estimate (approximately) the pk

i js. As concerns Voronoi
quantization, it has been shown in [Pagès et al. 2003] that the error induced by such
an approximation is of second order if the grids Γk are stationary.

Decoupling the estimation of the successive transition matrices makes possible to
perform a new parallelization of the estimation procedure (see [Bronstein et al. 2010])
with again a significant reduction of the computation time down to a few seconds
on a GPGPU device.

6.3 Martingale correction: an efficient heuristics

When the structure process (Xk)0≤k≤nis a martingale (e.g. a discounted set of d risky
assets under a risk neutral martingale probability, or a Brownian motion at times tn

k =
kT
n , etc) and X0 = x0, the quantization based approaches do not preserve naturally

this property (or any dynamical property). One way to proceed is to slightly modify
the grids Γk as follows:

– Define by a backward induction Γ̃n = Γn and for every k = 0, . . . ,n−1,

Γ̃k =
{

xk
1, . . . ,x

k
Nk

}
where x̃k

i =
Nk+1

∑
j=1

pk
i j x̃

k+1
j , i = 1, . . . ,Nk.

– Re-center the grids by setting

Γ
mart

k = Γ̃k + x0− x̃0.

The resulting quantization tree (Γ mart
k ,pk)0≤k≤n has the distribution of a martingale

starting at x0 at time 0. Although it often significantly improves numerical results,
theoretical error bounds no longer hold. It is observed in practice that the translation
x0− x̃0 is negligible.



Optimal Delaunay and Voronoi quantization schemes for pricing American style options 31

7 Numerical experiments

7.1 Swing Options

We begin the numerical illustrations by the example of the pricing of swing options
in a 2-factor Gaussian model. Such a problem consists in solving the normalized
stochastic control problem (interest rate is neglected)

esssup

{
E

(
n−1

∑
k=0

qk
(
vk(Xk)−K

)
|F0

)
,qk :(Ω ,Fk)→ [0,1], q̄n∈ [Qmin,Qmax]

}
(16)

for global consumption couple (Qmin,Qmax)∈ N2 and a cumulated consumption
before time k given by q̄k := ∑

k−1
l=0 ql . The sequence (Xk)0≤k≤n is two-dimensional

Gaussian Markov process specified below andStk = vk(Xk) stands for the price of the
underlying risky asset at time tk = kT

n (interest rates are assumed to be 0). As shown
in [Bardou et al. 2010b] there exists an optimal bang-bang control for this problem,
which leads, in combination with the BDPP, to

Pn
n ≡ 0

Pn
k (Q

k) = max
{

x
(
vk(Xk)−K

)
+E(Pn

k+1(χ
n−k−1(Qk,x))|Xk);x ∈ {0,1}∩ In−k−1

Qk

}
with admissible set IM

Qk := [(Qk
min−M)+∧1,Qk

max∧1] and

χM(Qk,x) :=
(
(Qk

min− x)+,(Qk
max− x)∧M

)
so that Pn

0 (Qmin,Qmax) is a solution to
(16).

A straightforward quantization of this problem then reads

P̂n
n ≡ 0

P̂n
k (Q

k) = max
{

x
(
vk(X̂k)−K

)
+E(P̂n

k+1(χ
n−k−1(Qk,x))|X̂k);x ∈ {0,1}∩ In−k−1

Qk

}
and error bounds have been established in [Bardou et al. 2010b]. Note here that
the computation of the conditional expectations E

[
P̂n

k+1(χ
n−k−1(Qk,x))|X̂k = xk

i
]

becomes straightforward owing to Section 6 since it holds E( f (X̂k+1)|X̂k = xk
i ) =

∑
Nk+1
j=1 pk

i j f (xk+1
j ).

Furthermore we will focus here on the case Qmin = 0, Qmax = n so that the solu-
tion Pn

0 has the representation

Pn
0 =

n

∑
k=1

(vk(Xk)−K)+.
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We therefore may hope that due to this simple structure as a strip of calls and
in view of section 5 that stationarity may play an important role for the numerical
results.

The structure Markov process (Xk)0≤k≤n is specified as in [Bronstein et al. 2010]
by

Xk =

(∫ k∆ t

0
e−α1(k∆ t−s)dW 1

s ,
∫ k∆ t

0
e−α2(k∆ t−s)dW 2

s

)
.

so that the 2-factor underlying risky asset is given at time tk by vk(Xk) with
vk(x1,x2) = s0 exp

(
σ1x1 + σ2x2 − 1

2 µtk

)
where µtk is chosen so that E(Stk = s0,

0≤ k ≤ n. The numerical parameters here read in detail as

s0 = 20, α1 = 1.11, α2 = 5.4, σ1 = 0.36, σ2 = 0.21, ρ =−0.11, n = 30

i.e. we have a Gaussian process (Xk) with a true correlation. Note that in such a
setting the transformation of an optimal and stationary Voronoi quantization grid
for the bivariate standard normal distribution into one with correlation ρ destroys
already the stationarity property in the transformed grid. In the case of dual quanti-
zation, stationarity for the transformed grid is at least preserved on conv(Γ ).

As shown in Figures 4 and 5 the dual methods outperforms clearly the Voronoi
approach, which is mainly caused by the intrinsic stationarity of the Delaunay quan-
tization mapping.

Moreover, we already observe that Dual quantization tends to lead to an upper
bound whereas Voronoi quantization is approaching from below. (Both those obser-
vations hold true in general for convex functions F and stationary quantizers X̂ .)

7.2 Bermuda options

First we recall the following basic fact: in classical non-arbitrage theory of contin-
gent claims, it is well-known that, in a complete market, the discounted fair price
of a Bermuda option with payoff process (hk(Stk))0≤k≤n, 0 = t0 < t1 < .. . < tk . . . <
tn = T , is the Snell envelope of the discounted payoff process so that

Premiumtk

S0
tk

= SnellP∗

(
hk(Stk)

S0
tk

)
0≤k≤n

where (S0
t )t∈[0,T ] is the (positive) numéraire (also called “riskless asset” with S0

0 = 1)
and St = (S1

t , . . . ,S
d
t )t∈[0,T ] is the risky asset price (0,∞)d-valued process and P∗

is a/the risk-neutral probability. Strictly speaking, we assume this “numéraire” to
be deterministic to fit the scope of this paper. In what follows Bermuda options
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Fig. 4 Convergence of the quantization methods as function of the average grid size N.

Swing option: #exercise days: 30, K = 15.0
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Fig. 5 Convergence of the quantization methods as function of the average grid size N.

appear as time approximation of American options (see [Bally and Pagès 2003b]
for various time discretization error bounds).
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7.2.1 Geometric Exchange Option

We now consider the case of a geometric exchange put option in a multi-dimensional
Black Scholes model with maturity T and 11 exercise dates k T

10 , k = 0, . . . ,10. That
means that S0

t = e−rt and that the the underlyings (Si
t)t∈[0,T ], i = 1, . . . ,d, are given

by the (uncorrelated) Black-Scholes dynamics:

Si
t = si

0 exp
(
(r−δi−

σ2
i

2
)t +σiW i

t

)
, si

0 > 0,

W = (W 1, . . . ,W d) standard Brownian motion, and the payoff of this option reads
for d = 2k

ϕ(S1
t , . . . ,S

d
t ) =

( k

∏
i=1

Si
t −

d

∏
i=k+1

Si
t

)
+
.

Example 1. As parameters we have chosen a Bermudan option with maturity T = 1,
11 exercise dates: k/10, k = 0, . . . ,10, and

si
0 = 40

2
d , i = 1, . . . ,k, si

0 = 40
2
d , i = k+1, . . . ,d, r = 0.05,

σi = 0.2, i = 1, . . . ,d, δi = 0.05, i = 1, . . . ,k, δi = 0.0, i = k+1, . . . ,d.

These settings can be reduced for any d to a 2-dimensional exchange option for
which we computed reference values using a Boyle-Evnine-Gibbs tree with 10.000
time steps.

The resulting log-log plots of the convergence for Voronoi and Dual quantization
can be found in Figures 6 and 7.
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Fig. 6 Log-Log plot of quantization methods for the geometric exchange option in dimension 2.
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Fig. 7 Log-Log plot of quantization methods for the geometric exchange option in dimension 4.

One observes here again that dual quantization approach yields a slightly better
rate (cf. Table 1) than the Voronoi quantization approximation.

2d 4d
Voronoi Quantization 0.73 0.36

Dual Quantization 0.86 0.38

Table 1 Rates of convergence for the exchange option.

Note moreover that the upper bound in Proposition 6.3 promises only an optimal
rate of 0.5 in dimension 2 and 0.25 in dimension 4. Therefore it seems that also in
this example there is some more smoothness to capture which leads in practice to
better rates than those for the worst case error within class of Lipschitz functionals.

Due to the very smooth convergence seen in Figures 6 and 7, we furthermore
apply a Richardson-Romberg extrapolation on the error expansion

EF(X)≈ EF(X̂)+κ N−α ,

which is a pure heuristic but has a theoretical justification for stationary quantizer
(see, e.g., [Pagès and Printems 2009]). We therefore use the rates α from Table 1
and extrapolate the unknown κ using two different grids sizes N1 and N2. As a
result, we obtain in the above setting for

P̂Rom
0 = P̂N1

0 +
P̂N1

0 − P̂N2
0

N−α

2 −N−α

1
N−α

1

a stable and fast convergence as shown in Figures 8 and 9 for dimensions 2 and 4.
These experiments suggest to adopt the mid-price 0.5× (PriceV Q +PriceDQ).
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Fig. 8 Convergence of the extrapolated quantization methods for the geometric exchange option
in dimension 2.
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Fig. 9 Convergence of the extrapolated quantization methods for the geometric exchange option
in dimension 4.

Alternatively, following the commonly shared idea of (temporarily) including
the payoff in the regression basis of Longstaff-Schwartz’s algorithm, one may use
the European price of the exchange option as a control variate. This means that the
BDPP reads

Ṽn = ϕtn(Xn)−CEur
T−tn(Xn)

Ṽk = max
{

ϕtk(Xk)−CEur
T−tk(Xk), E

(
Ṽk+1

∣∣Xk
)}

, 0≤ k ≤ n−1,

where CEur
t (x) is the European price for maturity t and initial Stock price x.

Consequently, the true price V0 is given by
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V0 = Ṽ0 +CEur
T (X0).

Numerical results for the above setting are given in Figures 10 and 11.
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Fig. 10 Convergence of quantization methods with European control variate for the geometric
exchange option in dimension 2.
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Fig. 11 Convergence of quantization methods with European control variate for the geometric
exchange option in dimension 4.

7.2.2 Put-On-The-Min option

A final comparison is taken out on the example of an put-on-the-min option in a two
dimensional Black Scholes model. The payoff of this option reads
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ϕ(S1
t ,S

2
t ) =

(
K−min(S1

t ,S
2
t )
)
+
.

Here again the reference values were computed using a Boyle-Evnine-Gibbs tree
with 10000 time steps.

We compare the dual quantization approach including the martingale correction
of Section 6.3 to the Longstaff-Schwartz (L-S) approach from the Premia software
package, see [Premia (Inria)]. For the L-S procedure, we have chosen a family of 22
independent functions (21 monomial functions + the payoff function) and plotted
in Figure 12 a Monte Carlo simulation with an increasing number of sample paths
ranging from 10.000 to 100.000 and its 95% confidence interval.

This setting was chosen to arrive at approximately equal computational times for
the L-S approach and the dual quantization method.

One clearly sees in Figure 12 that the quantization approach with martingale cor-
rection provides already for small N a very good approximation to the true value
of the Bermuda option. In addition, the L-S approach suffers from a higher volatil-
ity, since it is more depending on the Monte Carlo error than the quantization tree
approach, which contains the critical MC-Simulation only in the weight estimation.

Furthermore we have also plotted in Figure 12 the Monte Carlo estimation by an
L-S approach from the Premia software package in order to compare results.

Example 2. 2-asset (correlated) Black-Scholes model with maturity T = 1 and 11
exercise times, k T

10 , k = 0, . . . ,10,

s1
0 = s2

0 = 40, r = 0.05, σ1 = 0.2, σ2 = 0.3, ρ = 0.5, K = 40,

for a put on the min, i.e. payoff

ϕ(S1
t ,S

2
t ) =

(
K−min(S1

t ,S
2
t )
)
+
.

As underlying Markov process Xk we have chosen a 2-dimensional Brownian Mo-
tion W = (W 1,W 2) with correlation ρ .

As a global conclusion, optimal quantization methods show their efficiency in
various fields of Applied Probability (American pricing, stochastic control, nonlin-
ear filtering, etc) in medium dimensions, say 1≤ d ≤ 5, and sometimes higher ones
when using and, if necessary, combining in an appropriate way speeding up methods
like Romberg extrapolation, martingale correction, control variate like procedures,
etc. We refer to survey papers devoted to other applications like [Pagès et al. 2003]
for more numerical experiments. Quantization trees appear as space discretizations
of the global underlying Markov dynamics. Such methods can take advantage either
of the opportunity of an offline pre-processing or of recent massive parallelization
techniques (GPGPU). The second (on-line) phase, consisting of a tree descent, is in
any case instantaneous at a human scale.
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Fig. 12 Convergence of quantization methods for a put-on-the-min option in dimension 2.

In higher dimensions, recent works on quantization based stratified sampling
(see [Corlay and Pagès 2010]) suggest that quantization could also be used to op-
timally stratify a forward Monte Carlo simulation.

COMPUTATION DEVICE. All numerical illustrations were computed on GNU Linux
2.6.27.56 and SUN Java SE 6 JVM. For numerical experiments involving GPGPU
(only for Voronoi quantization) we refer to [Bronstein et al. 2010] and [Pagès and Wilbertz 2011].
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with S. Bouthemy and N. Casini (GDF-SUEZ).
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[Corlay and Pagès 2010] CORLAY, S. PAGÈS, G. [2010] : Functional quantization based stratified
sampling methods. Pre-pub PMA-1341.

[Devroye et al. 2004] DEVROYE, L. LEMAIRE, C.AND MOREAU, J.-M. [2004]: Expected time
analysis for Delaunay point location, Computational Geometry, 29(2):61-89

[Du and Gunzburger 2002] DU, Q. AND GUNZBURGER, M. [2002]: Grid generation and opti-
mization based on centroidal Voronoi tessellations, Appl. Math. and Comput., 133(4):591-607.

[Duflo 1996] DUFLO, M. [1996]: Algorithms stochastiques, coll. SMAI Mathématiques & Appli-
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[Pagès et al. 2004] PAGÈS, G., PHAM, H. AND PRINTEMS, J. [2004]: An Optimal Markovian
Quantization Algorithm for Multidimensional Stochastic Control Problems, Stochastics and
Dynamics, 4(4):501-545.

[Pagès and Printems 2005] PAGÈS, G. AND PRINTEMS, J. [2005]:
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